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Fig. 4. (a) A close look at the fields and currents in the gap of jont J1.
(b) An equvalent circuit for (a). (¢) The inductance L and reflection
coefficient Sj; for J1.
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Fig. 5. (a) Longitudinal view of the line and open circuit where the frequency
is such that the total electric field at the gap 1s a maximum and the magnetic
field vanishes. (b) Longitudinal view where the frequency is such that the
total magnetic field at the gap is a maximum and the electric field vanishes.
(¢) A closer view of the gap.

E,, and the magnetic field vanishes. The gap is so narrow that no
higher order modes penetrate it to reach the bottom of the gap,
but their presence in the vicinity of the gap causes the fringing
field shown in Fig. 1(b) and results in the discontinuity capaci-
tances (last term in (8)). There is no current to penetrate the gap,
so the gap resistance causes no voltage drop and goes unnoticed.

When the frequency is such that cos(28/+ ¢) is equal to —1,
the total magnetic field is twice the incident field, and the electric
field vanishes (Fig. 5(b)). Now there are no electric field lines at
all and the discontinuity capacitances are unexcited. However,
the circulating magnetic field H, (Fig. 5(c)) causes a current that
samples the gap resistance r (last term in (7)). The current
encounters the two contact resistances at the bottom of the gap
that represent the metal-to-metal contacts in the actual connector
joint. Current flowing across these contacts causes a significant
loss, which is reflected in the normalized resistance r. The
distributed or skin loss on the sides of the gap can also be
included in r, although it is not significant compared to the
contact loss.
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Analysis of Waveguiding Structures Employing
Surface Magnetoplasmons by the
Finite-Element Method

NADER MOHSENIAN, MEMBER, IEEE, TERRY J. DELPH, anND
DONALD M. BOLLE, FELLOW, 1EEE

Abstract —The dispersion relation and electromagnetic field distribu-
tions for a gyroelectrically loaded waveguiding structure are obtained
utilizing finite-element techniques. The structure considered consists of
two layers, one a dielectric and the other a semiconductor, bounded by two
perfectly conducting planes. The finite-element solution for the lowest real
branches in the dispersion spectrum was compared against a numerical
solution of the exact dispersion equation, and excellent agreement was
found between the two. The structure, exhibiting nonreciprocal behavior,
provides a suitable canonical model for the design of circuit components
such as circulators, isolators, and phase shifters.

I. INTRODUCTION

The use of surface magnetoplasmons on semiconductor sub-
strates shows promise in the development of components that
can substitute for ferrite devices in the millimeter- and submilli-
meter-wave ranges [1]-[3]. Analytical studies of canonical struc-
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tures employing surface magnetoplasmons have been reported in
[4]-[6]. As the geometry of gyroelectrically loaded waveguides
becomes more complicated, the problem of obtaining the disper-
sive behavior and the distribution of field intensities in the
structure demands more sophisticated techniques. One particu-
larly attractive means of dealing with this problem is the finite-
element technique. This method has been successfully applied to
microwave and optical waveguides, e.g., [7]. In this paper, we
present a finite-element formulation for TM-mode wave propa-
gation in a dielectric-semiconductor waveguide.

II. THE WAVEGUIDING STRUCTURE

We consider the two-layer dielectric—semiconductor structure,
sided by two perfectly conducting planes, shown in the insert of
Fig. 1. A finite-element mesh is shown superposed. The thickness
of the dielectric layer is taken to be P,, while that of the
semiconduting layer is P,. The substrate for the semiconductor
region is assumed to be a high-quality, moderately doped n-type
GaAs material with a carrier concentration of z=2.1x10%
¢m™?, equivalent to a plasma frequency of w, =10" rad/s. The
permeability p is taken to be a constant for both regions. A
uniform dc magnetic field corresponding to a cyclotron frequency
©,=10" rad/s (B, = 3810 G) is assumed to be applied parallel
to the interface. For a biasing magnetic field in the y direction,
the permittivity € remains a constant for the dielectric medium,
but becomes an asymmetric tensor for the semiconducting
medium, [4]-[6], having the form

£ 0 -/
e(w)=0 ¢ 0 (1)
jn 0 ¢
where
T2 : 2
£— O _ 90— j») [P P
w[(w—jv)z—wf] w(w—j7)
—wﬁwc

Tol(e- -]

Here, € is the static dielectric constant of the semiconducting
medium, w is the frequency of electromagnetic wave propa-
gation, and » is the collision frequency. Finally, the semiconduc-
tor and dielectric here are taken to be lossless, implying » = 0.

In the present analysis, we will consider only TM wave modes,
because TE modes do not exhibit interesting interactions with the
semiconducting material. This implies that only the &, e,, and
e, field components are nonvanishing. We now assume time-
harmonic wave propagation in the z direction with frequency
w and propagation constant y = a + jB, so that e, =
e,(x,y)e/*"" ¥ With these assumptions, an uncoupled partial
differential equation may be derived for e, from Maxwell’s
equatiofs. This equation has the general form

3% 3%

Fzz_‘_Ml?y—zz*—MZez:O (2)

where for the semiconducting medium
_ §(v? + @poeot)
g( Y2 + wpgeed)

and for the dielectric medium

wzl‘«oeo(gz - 772)

§

M, M2=72+

M;=1 M,=v>+ o pgese;.

Here, €, and p, are the vacuum permittivity and permeability,
and ¢, is the relative dielectric constant of the dielectric medium.,
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Fig. 1. Exact and finite-element dispersion spectra of a dielectric—semicon-
ductor single interface for case (1): P; =380 pm, P, =100 pm and case (2):
Py =320 pm, P, =50 pm.

The waveguiding structure shown in Fig. 1 is, of course, strictly
one-dimensional, so that d()/dy = 0. Solving Maxwell’s equa-
tions and applying the boundary conditions at the planes and at
the interface, we obtain the dispersion equation, which is

(;—1) coth(k,P,) = (

¢k, )
1 y2 + wlpgeoé
Jjny
-coth(k, P)—| ————— 3
(or)-( 2] @

where
ki=—y*—kia ki=-v'—kie () ki=wpoo
£ -7
o

co(w) =

11I. FINITE-ELEMENT FORMULATION

Because the governing equation (2) for the e, field component
is uncoupled and because the other field components are easily
expressible in terms of e, through Maxwell’s equations, e, was
chosen as the dependent variable for the finite-element formula-
tion. For the sake of generality, the finite-element equations will
be derived in two-dimensional terms using (2), even though the
problem to be treated is strictly one-dimensional. In the present
case, the finite-element equations are most conveniently gener-
ated by means of the Galerkin formulation. This yields

O, Pe. Mye, | N, dxdy=0 (4

[\ + M7+ Mae. | N(x ) dsdr=0 (4

where the N,(x,y) are the finite-clement interpolating (shape)
functions for the problem, and the index i ranges over those

+ M,
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nodal points at which no geometric boundary conditions are
imposed for e,. The interpolating functions are used to ap-
proximate e,(x,y) in the following manner: e,(x,y) =
[N(x, y)l{e,}, where [ N(x, y)] is the row vector of interpolating
functions and {e,} is the column vector of nodal point values.
An application of the divergence theorem now yields the finite-
element equations in the form

IT1e) -6 5

The i, jth element in the coefficient matrix {T] is given by
oN, aN dN, 9N,

-/ f ( dax 8x M5y dy 3y y
The line integral in (5) is to be evaluated around the boundary B
of the area A under consideration, with (n,,n,) being the
components of the unit normal vector to B. The finite-clement
equations are assembled from the element contributions to (5),
the boundary integral being evaluated around the boundary B, of
each element. It is not difficult to show that the line integral
vanishes everywhere except along the interface between the di-
electric and semiconducting regions, where special care must be
taken. Let n be one of the values of the index i corresponding to
the interface nodes. Further, denote the values of e, in the
dielectric and semiconducting regions of e and ¢, respec-
tively. Along the interface, we must have both continuity of

e,, el =¢?, and continuity of /. The latter condition, from
Maxwell’s equations, gives

detH de®
- = ( R + R2e§2>)
o dx

»—zn_v)zv,ds=0. (5

MZNN) dxdy. (6)

=C (N

x=0

dx

where

g(yz +“’2#0€0‘1) (Jm’)
———% R, = R
‘1(72 + “’2!"0‘05) ’ 3 "

We now write the nth finite-element equation separately for
both the dielectric and the semiconducting region. Taking account
of the fact that n, = +1,n, =0 along the interface, and making
use of (7), we have, respectively (with summation convention for
repeated subscripts implied),

R, =

TOeD = Cd, (8)

R, Cd
TP b =" 9
ny eZ_[ (Rl) njer Rl ( )

where
& )
dy=[" N0 y)dy b= [ N0, 7)N0,) .

Here 8 and — & represent the p coordinates of the nodes on the
top and bottom of the elements, taken to be 8§ =15 pm. Eliminat-
ing C between (8) and (9) and requiring continuity of e, at the
interface, e = 2, now yields for the nth equation

zn?

(T + RTP — Ryb,, ) e, =0. (10)

Equation (10) represents the finite-element equations corre-
sponding to the interface nodes. The remaining finite-element
equations have the form of (5), with the line integral vanishing
for these equations. It is worth noting that the inclusion of the
terms with coefficients R, and R, in (10) renders the resulting
finite-clement coefficient matrix [T* ] nonsymmetric, even though
the basic coefficient matrix [T] in (5) is symmetric. When assem-

bled, the finite-element equations have the form [T*]{e.} = 0. A
nontrivial solution then requires that

IT*|=0

(11)
Equation (11) represents the finite-element dispersion equation
for the problem. Given a value of w, one may obtain correspond-
ing values of y by evaluating |7 *| numerically and employing
standard numerical root-finding techniques.

IV. RESULTS

Numerical results for the dispersion spectrum, using a numeri-
cal root-finding technique, were obtained from both the exact
dispersion relation given by (3) and the approximate finite-
element formulation given by (11). Two different combinations
of layer thicknesses were considered. In case (1), P, = 80 pm and
P, =100 pm, and in case (2), P,=320 pm and P, =50 pm.
Furthermore, it was assumed that ¢, =1, ¢® =13. For the finite-
element analysis, the two layers were divided into three equisized
elements (Fig. 1) using eight-noded isoparametric quadrilateral
elements. Fig. 1 shows the resulting dispersion spectra for both
combinations of thicknesses in terms of a normalized propa-
gation constant defined by 8= P, and a normalized frequency
given by @ = wP, /¢, where ¢ is the velocity of light. Nonrecipro-
cal effects are evident in both branches of the spectrum. It can be
seen that excellent agreement exists between the spectra com-
puted from the exact dispersion relation and the approximate
finite-element result.

At low frequencies, a reverse-propagating mode was obtained
in both cases, with the bulk of its energy traveling in the
semiconducting medium. For small values of @, this branch
becomes asymptotic to the light line of the semiconducting
medium; ie., @ = — B/ \/56)' as ® — 0, where £9 is defined by:
£ =¢9 4 (w,/w.)*. The absence of a forward-propagating
mode over this frequency range may be explained through ex-
amining the configuration of the field distributions shown in Fig.
2(a). If such a mode existed, most of its energy would need to be
concentrated in the semiconducting medium and to be traveling
in the positive z direction. The field components of the dielectric
medium would display the same behavior as those derived for the
reverse mode. To justify the direction of the signal, the e,
component should exhibit a negative amplitude in the semicon-
ducting medium. But for the given electrical parameters of this
problem, the tensor elements £ and % yield positive values and
these conditions do not allow the fulfilling of the continuity of
the normal component of the D field. Consequently, there exists
only a unidirectional mode, which propagates in the reverse
direction over this frequency range, i.e., @ < 0.17. When losses
are introduced, this mode will suffer substantial attenuation;
therefore, the remaining branches of the spectrum are the ones of
primary interest.

In both cases, the lower branches of the forward and reverse
propagation modes become asymptotic to the light line, i.e.,
®— + B as ® — 0. However, for higher frequencies, the forward
mode extends into a region where the quantity k3 becomes
negative. In this region, the transverse field components have a
trigonometric variation in the semiconducting medium. The up-
per branches lie entirely in this region, and are called the
“volume” modes [5], [6].

Also observed in case (2) is a change of slope in the lower
branch of the reverse-propagating mode. This may be understood
through the field displacement behavior of the mode in the
structure. Here, unlike case (1), the transverse component of the
magnetic field clings to the plane at x=P, for B < —0.6, as
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Fig. 2. Model field distributions of components (e,, e, 4,) taken from the
branches of the exact and finite-element (F.E.) dispersion spectra for case
(2): P, =320 pm, P; = 50 pm. (a) Unidirectional branch, § = —1.4, & =.101.
(b) Lower branch, 8= —14, & =.381.

shown in Fig. 2(b). For this portion of the branch, the direction
of the energy flow is reversed, and with the energy traveling in
the positive direction, a change in the slope of the branch is
obtained. \

Of interest is the fact that there exists a frequency band above
the lower reverse mode which contains only a forward mode.
This offers the possibility of designing components such as
isolators and circulators having a small attenuation constant
when losses and a more realistic geometry are considered. For the
particular set of geometric and electrical parameters used here,
this frequency band was calculated to be 358 GHz < f <411
GHz for case (1) and 377 GHz < f <396 GHz for case (2), with
the former case having a 15-percent bandwidth.

Fig, 2 shows the modal field distributions for the components
(e,, ey, h,) derived from both the exact and finite-element (F.E.)
solutions. Here, for comparison purposes only, the A, component
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Fig. 3. Field structure of components E(——) and H(®, X) obtained from
the finite-element formulation for case (1): P, =80 pm, P, =100 um and
case (2): Py=320 pm, P, =50 pm. (a) Case (2), unidirectional branch,
B =—1.0, ® =.078. (b) Case (1), lower branch, B =12, & =.847.

was normalized by the factor 7, for the lower branch and by the
factor 1, /10 for the unidirectional branch, where 3, = 376.82 Q
is the impedance of free space. The value of e, at the interface is
normalized to unity. For the linear region of the lower branches
in both cases, most of the energy is seen to be contained within
the dielectric medium, while the energy is essentially uniformly
distributed throughout the structure as these branches move away
from the light line. The upper branches in case (1) also exhibit
similar energy distribution, but the behavior of case (2) is some-
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what different. Here, the bulk of the energy shifts to the semicon-
ducting medium, while at the very low end of the upper branches
a fairly uniform distribution of energy may be noted. Finally, the
field structures of the components (e,, e,, k) derived from the
finite-element formulation are shown in Fig. 3 at time ¢r=0.
These patterns do not attempt to show the relative field strengths,
but only the directions. However, the relative field strengths
between the two media can be observed in the previous figure.

V. CONCLUSIONS

A numerical analysis based on the finite-element formulation
has been presented for a canonical, one-dimensional, gyroelectri-
cally loaded waveguiding structure. The agreement between the
finite-element solution and that obtained from the exact disper-
sion equation can be seen to be excellent and was, in fact, good
to three significant figures. The primary advantage of the finite-
element method is, of course, its ability to treat problems of
practical interest involving complicated two-dimensional geome-
tries and correspondingly complicated electric and magnetic field
distributions. The results given here indicate that the finite-
element method holds substantial promise for such applications,
and gives the necessary confidence for its use in the analysis of

electromagnetic wave propagation in much more complex gyro-
electrically and gyromagnetically loaded waveguiding structures,
where exact methods of analysis are not available.
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