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Fig, 4. (a) A close look at the fields aud currents in the gap of Jourt J1.

(b) An equwafent circuit for (a). (c) The inductance L and reflection

coefficient &l for J1.

w///////////zJ+\\\\\\\\\\\\\\\\\\\\\\\\\\\d

COS(21JI- 4)=+1 + ET=2E, .3 HT=0

(a)

v//////////////A\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
H,———~HT

( u I

~====
c0s(2fJ–+)=–l * HT=2H, &E~=o

(b)

a
++CONTACT

CIRCUMFERENCE

(c)

Fig. 5. (a) Longltudinaf view of the line and open clrcrrit where the frequency

is such that the total electric field at the gap m a maximum and the magnetic

field vauishes, (b) Longitudinal view where the frequency is such that the

total magnetic field at the gap is a maximum and the electric field vanishes.

(c) A closer view of the gap.

E,, and the magnetic field vanishes. The gap is so narrow that no

higher order modes penetrate it to reach the bottom of the gap,

but their presence in the vicinity of the gap causes the fringing

field shown in Fig. l(b) and results in the discontinuity capaci-

tances (last term in (8)). There is no current to penetrate the gap,

so the gap resistance causes no voltage drop and goes unnoticed.

When the frequency is such that cos (2/31++) is equal to – 1,

the total magnetic field is twice the incident field, and the electric

field vanishes (Fig. 5(b)). Now there are no electric field lines at

all and the discontinuity capacitances are unexcited. However,

the circulating magnetic field HT (Fig. 5(c)) causes a current that

samples the gap resistance r (last term in (7)). The current

encounters the two contact resistances at the bottom of the gap

that represent the metal-to-metal contacts in the actuaf connector

joint. Current flowing across these contacts causes a significant

loss, which is reflected in the normalized resistance r. The

distributed or skin loss on the sides of the gap can also be

included in r, although it is not significant compared to the

contact loss.
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Analysis of Waveguiding Structures Employing

Surface Magnetoplasmons by the

Finite-Element Method

NADER MOHSENIAN, MEMRER,IEEE,TERRY J. DELPH, AND

DONALD M. BOLLE, FELLOW, IEEE

Abstract —The dispersion relation and electromagnetic field distribu-

tions for a gyroelectcicafly loaded wavegniding strnctnre are obtained

utilizing finite-element techniques. The structure considered consists of

two layers, one a dielectric and the other a semiconductor, bounded by two

perfectly conducting planes. The finite-element solution for the lowest real

branches in the dispersion spectrum was compared against a numerical

solution of the exact dispersion equation, and excellent agreement was

found between the two. The strncture, exhWing nonreciprocal behavior,

provides a suitable canonical model for the design of circuit components

such as circulators, isolators, and phase shifters.

I. INTRODUCTION

The use of surface magnetoplasmons on semiconductor sub-

strates shows promise in the development of components that

can substitute for ferrite devices in the millimeter- and submilli-

meter-wave ranges [1]– [3]. Analytical studies of canonical struc-
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tures employing surface magnetoplasmons have been reported in

[4]-[6]. As the geometry of gyroelectncally loaded waveguides

becomes more complicated, the problem of obtaining the disper-

sive behavior and the distribution of field intensities in the

structure demands more sophisticated techniques. One particu-

larly attractive means of dealing with this problem is the finite-

element technique. This method has been successfully applied to

microwave and optical waveguides, e.g., [7]. In this paper, we

present a finite-element formulation for TM-mode wave propa-

gation in a dielectric-semiconductor waveguide.

II. THE WAVEGUIDING STRUCTURE

We consider the two-layer dielectric-semiconductor structure,

sided by two perfectly conducting planes, shown in the insert of

Fig. 1. A finite-element mesh is shown superposed. The thickness

of the dielectric layer is taken to be PI, while that of the

semiconduting layer is P2. The substrate for the semiconductor

region is assumed to be a high-quality, moderately doped n-type

GRAS material with a carrier concentration of n = 2.1x1015

cm–3, equivalent to a plasma frequency of COP=1013 rad/s. The

permeability p is taken to be a constant for both regions. A

uniform dc magnetic field corresponding to a cyclotron frequency

OC=1012 rad/s (II. = 3810 G) is assumed to be appfied @rallel

to the interface. For a biasing magnetic field in the y direction,

the permittivity c remains a constant for the dielectric medium,

but becomes an asymmetric tensor for the semiconducting

medium, [4]–[6], having the form

[1

.$ 0 -j?J

62(U)= o { o (1)

jrfof

where

2
— up tic

‘=cd[(ti-j v)%:] “

Here, c(o) is the static dielectric constant of the semiconducting

medium, u is the frequency of electromagnetic wave propa-

gation, and v is the collision frequency. Finally, the semiconduc-

tor and dielectric here are taken to be lossless, implying v = O.

In the present analysis, we will consider only TM wave modes,

because TE modes do not exhibit interesting interactions with the

semiconducting material. This implies that only the hY, ex, and

e= field components are nonvanishing. We now assume time-

harmonic wave propagation in the z direction with frequency

o and propagation constant y = a + j~, so that e= =

e=(x, y)eJ’’’-Y=. With these assumptions, an uncoupled partial

differential equation may be derived for e, from Maxwell’s

equatiohs. This equation has the general form

a 2ez a2e=
—+M1—
ax2

+ i142eZ= O
ayz‘,

where for the semiconducting medium

~ _ {(Y2 + ~2Po~o~)
M2=y2+

@21Jo~o(f2 – ~2)

1- ‘$(Y2 + ~’1.%~of) {

(2)

and for the dielectric medium

Ml =1 M2 = yz + Q2pococl.

Here, co and p. are the vacuum permittivity and permeability,

and c1 is the relative dielectric constant of the dielectric medium.
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Fig. 1. Exact and finite-element dispersion spectra of a dielectric- semicon-

ductor single interface for case (l): “Pl = 80 ~m, P2 = 100 ~m and case (2):

F’l = 320 pm, P2 = 50 pm.

The waveguiding structure shown in Fig. 1 is, of course, strictly

one-dimensional, so that 8 ()/8y = O. Solving Maxwell’s equa-

tions and applying the boundary conditions at the planes and at

the interface, we obtain the dispersion equation, which is

(Y+ZO,OJ ‘3).coth(k2P2)– z

III. FINITE-ELEMENT FORMULATION

Because the governing equation (2) for the e= field component

is uncoupled and because the other field components are easily

expressible in terms of e, through Maxwell’s equations, e= was

chosen as the dependent variable for the finite-element formula-

tion. For the sake of generrdity, the finite-element equations will

be derived in two-dimensional terms using (2), even though the

problem to be treated is strictly one-dimensional. In the present

case, the finite-element equations are most conveniently gener-

ated by means of the Galerkin formulation. This yields

JJ(a2e 82ez~+ M—

1ay2 )+M2e= N,(x, y)dxdy=O
,4 8X2

(4)

where the Ni ( x, y ) are the finite-element interpolating (shape)

functions for the problem, and the index i ranges over those
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nodal points at which no geometric boundary conditions are

imposed for e,. The interpolating functions are used to ap-

proximate e=( x, y) in the following manner: e=( x, y) =

[N(x, y)]{ e, }, where [IV(x, y)] is the row vector of interpolating

functions and {e, } is the column vector of nodal point values.

An application of the divergence theorem now yields the finite-

element equations in the form

[Tl{ez}-~(:nx+M1 ~n.”)Na=o. (5)

The i, j th element in the coefficient matrix [T] is given by

The line integral in (5) is to be evaluated around the boundary ~

of the area A under consideration, with ( rzX, nY) being the

components of the unit normaf vector to ~. The finite-element

equations are assembled from the element contributions to (5),

the boundary integral being evaluated around the boundary ~, of

each element. It is not difficult to show that the line integral

vanishes everywhere except along the interface between the di-

electric and semiconducting regions, where special care must be

taken. Let n be one of the values of the index i corresponding to

the interface nodes. Further, denote the values of e, in the

dielectric and semiconducting regions of e~ll and ej2), respec-

tively. Along the interface, we must have both continuity of

e,, ejl) = ej2), and continuity of h,,. The latter condition, from

Maxwell’s equations, gives

ile?)

dx = i
RI

~=o

,

a e$z)

— + Rze~2~
ax )

=C (7)

X=o

where

We now write the n th finite-element equation separately for

both the dielectric and the semiconducting region. Taking account

of the fact that nx = +1, n ~ = O along the interface, and making

use of (7), we have, respectively (with summation convention for

repeated subscripts implied),

where

Here 8 and – 8 represent

bnJ =~:8Nn(0, y)~((), y) dy.

the y coordinates of the nodes on

(8)

(9)

the

top and bottom of the elements, taken to be 8 =15 um. Eliminat-

ing c between (8) and (9) and requiring continuit~ of e, at the

interface, e~~)= e~~), now yields for the n th equation

(~~) + Rl~~) -R2bxJ)ezJ =0. (lo)

Equation (10) represents the finite-element equations corre-

sponding to the interface nodes. The remaining finite-element

equations have the form of (5), with the line integraf vanishing

for these equations. It is worth noting that the inclusion of the

terms with coefficients RI and R z in (10) renders the resulting

finite-element coefficient matrix [T* ] nonsymmetnc, even though

the basic coefficient matrix [T] in (5) is symmetric. When assem-

bled, the finite-element equations have the form [T* ]{ e=} = O. A

nontrivial solution then requires that

}T*I=O. (11)

Equation (11) represents the finite-element dispersion equation

for the problem. Given a value of u, one may obtain correspond-

ing values of y by evaluating IT* I numerically and employing

standard numerical root-finding techniques.

IV. I@SULTS

Numerical results for the dispersion spectrum, using a numeri-

cal root-finding technique, were obtained from both the exact

dispersion relation given by (3) and the approximate finite-

element formulation given by (11). Two different combinations

of layer thicknesses were considered. In case (l), 1’1 = 80 pm and

Pz = 100 ~m, and in case (2), PI = 320 pm and Pz = 50 pm.

Furthermore, it was assumed that c1 =1, c(o) = 13. For the finite-

element analysis, the two layers were divided into three equisized

elements (Fig. 1) using eight-noded isoparametric quadrilateral

elements. Fig. 1 shows the resulting dispersion spectra for both

combinations of thicknesses in terms of a normalized propa-

gation constant defined by ~ = P2~ and a normalized frequency

given by G = w Pz /c, where c is the velocity of light. Nonrecipro-

cal effects are evident in both branches of the spectrum. It can be

seen that excellent agreement exists between the spectra com-

puted from the exact dispersion relation and the approximate

finite-element result.

At low frequencies, a reverse-propagating mode was obtained

in both cases, with the bulk of its energy traveling in the

semiconducting medium. For small values of Z, this branch

becomes asymptotic to the light line of the semiconducting

medium; i.e., ti ~ – ~/@ as ii -0, where f(o) is defined by:

f(o) = c(o)+ ( u, /tiC)2. The absence of a forward-propagating

mode over this frequency range may be explained through ex-

amining the configuration of the field distributions shown in Fig.

2(a). If such a mode existed, most of its energy would need to be

concentrated in the semiconducting medium and to be traveling

in the positive z direction. The field components of the dielectric

medium would display the same behavior as those derived for the

reverse mode. To justify the direction of the signal, the eX

component should exhibit a negative amplitude in the semicon-

ducting medium. But for the given electrical parameters of this

problem, the tensor elements .$ and q yield positive values and

these conditions do not allow the fulfilling of the continuity of

the normal component of the D field. Consequently, there exists

only a unidirectional mode, which propagates in the reverse

direction over this frequency range, i.e., fi <0.17. When losses

are introduced, this mode will suffer substantial attenuation;

therefore, the remaining branches of the spectrum are the ones of

pnmzuy interest.

In both cases, the lower branches of the forward and reverse

propagation modes become asymptotic to the light line, i.e.,

G - + ~ as iii + O. However, for higher frequencies, the forward

mode extends into a region where the quantity k; becomes

negative. In this region, the transverse field components have a

trigonometric variation in the semiconducting medium. The up-

per branches lie entirely in this ~egion, and are called the

“ volume” modes [5], [6].

Also observed in case (2) is a change of slope in the lower

branch of the reverse-propagating mode. This maybe understood

through the field displacement behavior of the mode in the

structure. Here, unlike case (l), the transverse component of the

magnetic field clings to the plane at x = P2 for ~ < – 0.6, as
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Fig. 2. Model field distributions of components (e,, eX, hY) taken from the

branches of the exact and finite-element (F. E.) dispersio~ spectra for case

(2): PI= 320 pm, P~ = 50 #m. (a) Unidirectional branch, ~ = – 1.4, Z = .101.

(b) Lower branch, /3= – 1.4, ii= .381.

shown in Fig. 2(b). For this portion of the branch, the direction

of the energy flow is reversed, and with the energy traveling in

the positive direction, a change in the slope of the branch is

obtained.

Of interest is the fact that there exists a frequency band aboye

the lower reverse mode which contains only a forward mode.

lhis offers the possibility of designing components such as

isolators and circulators having a small attenuation constant

when losses and a more realistic geometry are considered. 170r the

particular set of geometric and electrical parameters used here,

this frequency band was calculated to be 358 GHz < ~ <411

GHz for case (1) and 377 GHz < ~ <396 GHz for case (2), with

the former case having a 15-percent bandwidth.

Fig. 2 shows the modal field distributions for the components

(eZ, eX, h,) derived from both the exact ad fifite-element (FE)

solutions: Here, for comparison purposes only, the h ~ component
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Fig. 3. Field structure of components E(—) and H(C3, X ) obtained from

the finite-element formulation for case (1): PI =80 pm, P2 = 100 pm and

qase (2): PI = 320 pm, P2 = 50 pm. (a) Case_(2), unidmectionat branch,

B = – 1.0, ~ = .078. (b) Case (1), lower branch, B = 1.2, = = .847.

was normalized by the factor rfo for the lower branch ad by the

factor q. /10 for the unidirectional branch, where q.= 376.82 Q

is the impedance of free space. The value of e= at the interface is

normalized to unity. For the linear region of the lower branch&

in both cases, most of the energy is seen to be contained within

the dielectric medium, while the energy is essentially uniformly

distributed throughout the structure as these branches move away

from the light line. The upper branches in case (1) also exhibit

similar energy distribution, but the behavior of case (2) is some-
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what different. Here, the bulk of the energy shifts to the semicon-

ducting medium, while at the very low end of the upper branches

a fairly uniform distribution of energy may be noted. Finally, the

field structures of the components (e=, eX, hY ) derived from the

finite-element formulation are shown in Fig. 3 at time t = O.

These patterns do not attempt to show the relative field strengths,

but only the directions. However, the relative field strengths

between the two media can be observed in the previous figure.

V. CONCLUSIONS

A numerical analysis based on the finite-element formulation

has been presented for a canonical, one-dimensional, gyroelectri-

cally loaded waveguiding structure. The agreement between the

finite-element solution and that obtained from the exact disper-

sion equation can be seen to be excellent and was, in fact, good

to three significant figures. The primary advantage of the finite-

element method is, of course, its ability to treat problems of

practical interest involving complicated two-dimensional geome-

tries and correspondingly complicated electric and magnetic field

distributions. The results given here indicate that the finite-

element method holds substantial promise for such applications,

and gives the necessary confidence for its use in the analysis of

electromagnetic wave propagation in much more complex gyro-

electrically and gyromagnetically loaded waveguiding structures,

where exact methods of analysis are not available.
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